[ad_1]
Minimum swaps You are given the following: An Integer N A binary string S of length N×N N is always even and string S has an equal number of 0's and 1's. You are allowed to swap any two elements S[i] and S[j] (0≤i ≠j<N×N) of string S. Task Determine the minimum number of swaps required to be done on string S such that the following conditions hold true for the entire string. If (i+1) mod N-(i) mod N=1, then (S[i+1]+S[i])=1 for (0≤i<N×N-1). If i+N<N×N, then (S[i+N]+S[i])=1. Note Assuming 0 based indexing. Example Assumptions N=2 String S="1010" Approach Swapping indices 0 and 1, we get string S="0110", String S="0110" satisfies all the conditions, Hence answer is 1. Function description Complete the solve function provided in the editor. This function takes the following 2 parameters and returns the minimum number of swaps required. N: represents the integer N S: Represents the binary string S of length N×N [![enter image description here][1]][1] [1]: https://i.stack.imgur.com/FUOJc.png Sample Input:1,2,0011 Sample output:1 Explanation The first represents the number of test cases T=1 For test case 1 Given N=2 String S="0011" Approach Swapping indices 0 and 1 we get string S="1001", String S="1001" satisfies all the conditions, Hence the answer is 1.
私が試したこと:
質問を理解するのは非常に難しかった
解決策 1
引用:質問を理解するのは非常に難しかった
課題は、クラスで学んだことをテストするように設定されています。 質問が理解できない場合は、先生と話し合う必要があります。
[ad_2]
コメント